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1. Overview
In this supplementary material, more details about the pro-
posed MOSAIC and more experimental results are pro-
vided, including:
• Discusstion about multi-channel inference-time opti-

mization. (Sec. 2);
• Implementation details of our viewpoint selection algo-

rithm. (Sec. 3);
• Details of dataset collection process. (Sec. 4);
• More qualitative results. (Sec. 5);

2. Multi-channel Inference-time Optimization
To effectively achieve the objective mentioned in main pa-
per in Eq. 16, we incorporate our optimization directly
into the diffusion generation process and propose a multi-
channel test-time optimization approach. At each timestep
t during the sampling process, we optimize the latent vari-
ables z[1:N ]

t to minimize the depth-weighted projection loss
while maintaining high-quality generation. Specifically, for
each timestep t, we first obtain the predicted clean latents
ẑ
[i]
0 = f

(t)
θ (z

[i]
t ) for each view i. We then calculate the

depth-weighted projection loss LDW
Proj(z

[1:N ]
t ) and optimize

z
[1:N ]
t through stochastic gradient descent:

z
[i]
t ← z

[i]
t − η ·

∂LDW
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t )

∂z
[i]
t

,

where η is the learning rate. Ideally, this gradient computa-
tion would involve backpropagation through the noise pre-
dictor f (t)

θ . However, this approach would incur prohibitive
memory costs, especially when dealing with multiple views
simultaneously. To address this challenge, we employ a
gradient stopping technique where we detach the noise pre-
dictor from the computational graph during optimization.
Since finding the optimal solution with a single iteration is
challenging, we perform multiple optimization steps (nopt)

at each timestep during the early denoising stages when the
latent structure is still being formed.

3. Viewpoint Selection Algorithm

Our viewpoint selection algorithm is based on the following
key assumption: If we discretize the 3D space into voxels,
the primary factor affecting consistency between images is
the set of voxels occupied by the object, while free voxels
do not influence our task.

Thus, our algorithm first identifies all occupied voxels
observed in the scene and designates them as interested
points, assigning each interested point an initial score of
2. Next, for all candidate viewpoints along the trajectory,
we compute the total score of the visible interested points
based on the camera’s intrinsic and extrinsic parameters.
We then iteratively select the viewpoint with the highest
score, decrement the score of each interested point observed
by this viewpoint by 1, and remove the selected viewpoint
from the candidate set. This process continues until the ac-
cumulated score of the observed interested points reaches a
predefined termination threshold.

The pseudocode is shown in Algorithm 1. We also visu-
alize this process in Fig. 1.

4. Dataset Collection Details

For MP3D [1] scenes, we manually collect the trajectories
for our dataset.

For HM3D [2] scenes, we begin by randomly selecting
a start position for the robot within the scene. Next, we
choose a target position such that its geometric distance
from the start position falls within the range of 8.5m to
11m. The robot then navigates to the target by following
the shortest geometric path. Its action space consists of
three discrete actions: moving forward by 0.25m, turning
right by 30◦, and turning left by 30◦. We show the detailed
dataset information in Tab. 1. We also show some trajectory
examples in Fig. 2.
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Figure 1. Visualization of the viewpoint selection process.

Algorithm 1 Viewpoint Selection Algorithm

1: Input: A set of candidate viewpoints V , depth obser-
vations Depth.

2: Output: A set of selected viewpoints.
3: Compute Interested Points: Extract the set of inter-

ested points I using Depth and V .
4: Initialize: Assign an initial score of 2 to each point in

I and set Score sum = 0.
5: while Score sum < Threshold do
6: for all v ∈ V do
7: Compute scores for all visible interested points.
8: end for
9: Select the candidate viewpoint v∗ with the highest

score.
10: for all v ∈ V do
11: Remove viewpoints that exhibit highly similar

visibility to v∗.
12: end for
13: Update scores for observed interested points.
14: Score sum← Score sum + Score(v∗).
15: end while

After collecting the data in the scenes, we run the view-
point selection algorithm introduced in Sec. 3 to get our fi-
nal dataset used for test.

5. More Qualitative Results
We show more qualitative results in Figs. 3 to 7.
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Figure 2. Visualization of trajectories in our collected dataset.
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Table 1. Summary of HM3D Dataset Information

Episode Idx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total Step Mean 55.90 48.63 55.90 48.50 49.89 58.00 58.13 38.50 54.30 39.30 59.80 44.50 49.10 57.20 40.00 54.40
Geo Distance Mean 9.72 9.33 8.99 9.21 9.10 9.68 9.40 7.44 9.81 6.34 9.69 7.04 8.89 9.49 7.17 9.09
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Figure 3. More Qualitative Results.

3



In
pu

t D
ep

th
GT

M
OS

AI
C

(O
ur

s)
M

VD
iff

su
si

on
In

pa
in

tin
g

Figure 4. More Qualitative Results.
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Figure 5. More Qualitative Results.
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Figure 6. More Qualitative Results.
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Figure 7. More Qualitative Results.
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